Thermal Evolution of Cation Distribution/Crystallite Size and Their Correlation with the Magnetic State of Yb-Substituted Zinc Ferrite Nanoparticles

نویسندگان

  • M. Vucinic-Vasic
  • E. S. Bozin
  • L. Bessais
  • G. Stojanovic
  • U. Kozmidis-Luburic
  • M. Abeykoon
  • B. Jancar
  • A. Meden
  • A. Kremenovic
  • B. Antic
چکیده

Evolution of the structural and magnetic properties of ZnFe1.95Yb0.05O4 nanoparticles, prepared via a high-energy ball milling route and exposed to further thermal annealing/heating, was assessed in detail and correlation of these properties explored. While as-prepared spinel nanoparticles possess a high degree of inversion, heating of the sample to ∼500 °C is found to rapidly alter the cation distribution from mixed to normal, in agreement with the known cation preferences. Under the same conditions the crystallite size only slowly grows. By further thermal treatment at higher temperatures, the crystallite size is changed more appreciably. An interrelationship among the lattice parameter, octahedral site occupancy, and crystallite size has been established. The observations are (a) both the site occupancy of Fe at octahedral 16d spinel sites (N16d(Fe )) and the cubic lattice parameter rapidly increase with an initial increase of the crystallite size, (b) the lattice parameter increases with increasing occupancy, N16d(Fe ), and (c) there appears to be a critical nanoparticle diameter (approximately 15 nm) above which both the site occupancy and lattice parameter values are saturated. The magnetic behavior of the annealed samples appears to be correlated to the evolution of both the cation distribution and crystallite size, as follows. As-prepared samples and those annealed at lower temperatures show superparamagnetic behavior at room temperature, presumably as a consequence of the Fe distribution and strong Fe(8a)−O−Fe(16d) superexchange interactions. Samples with a nanoparticle diameter greater than 12 nm and with almost normal distributions exhibit the paramagnetic state. The coercive field is found to decrease with an increase of the crystallite size. Partial Yb/Fe substitution is found to increase the inversion parameter and saturation magnetization. Detailed knowledge of the thermal evolution of structural/microstructural parameters allows control over the cation distribution and crystallite size and hence the magnetic properties of nanoferrites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salt-assisted combustion synthesis of cobalt ferrite nanoparticles; magnetic properties and cation distribution measurement by XRD analysis

Current study represents the effect of the size and synthesis method on the cation distribution of cobalt ferrite nanoparticles and on the magnetic properties. The nanoferrites have been synthesized through sol-gel auto-combustion method using metal nitrates as precursor and citrate as fuel. In order to obtain the fine and agglomerated-free particles, we have used salt-assisted combustion react...

متن کامل

Synthesis and Characterization of Nickel Zinc Ferrite Nanoparticles

In this research nickel zinc ferrite nanoparticles with composition of Ni1-xZnxFe2O4 (where x=0, 0.3, 0.7, 1) were synthesized by a sol-gel method at 600 °C for 5 hours. The structure of nanoparticles was studied using X-ray diffraction pattern. The lattice parameter of ferrite nanoparticles was calculated and indicates lattice constant of nanoparticl...

متن کامل

Synthesize of Superparamagnetic Zinc Ferrite Nanoparticles at Room Temperature

Superparamagnetic single phase zinc ferrite nanoparticles have been prepared by coprecipitation method at 20 °C without any subsequent calcination. The composition, crystallite size, microstructure and magnetic properties of the prepared nanoparticles were investigated using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM)...

متن کامل

Preparation and investigation of magnetic properties of Manganese Cadmium ferrite nanoparticles by Sol-gel method

In the present investigation, manganese ferrite nanoparticles substituted by cadmium with Mn1-xCdxFe2O4 composition and substituted amount x=(0, 0.1, 0.3, 0.5) were prepared by Sol-gel method. Pattern analysis of X-ray diffraction (XRD) confirmed ferrite single phase structure in all samples. The average crystal size was estimated from 17 to 22 nm. The chemical bonds and ferrite formation phase...

متن کامل

A Simple Thermal Decomposition Method for Synthesis of Co0.6Zn0.4Fe2O4 Magnetic Nanoparticles

Magnetic nanoparticles attracted a great deal of attention in the medical applications due to their unique properties. The most exceptional property of magnetic particles is their response to a magnetic force, and this property has been utilized in applications such as drug targeting, bioseparation, contrast agents in magnetic resonance imaging (MRI) and heating mediators for cancer therapy. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013